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PROTON MONTE CARLO TRANSPORT PROGRAM PTRAN

Martin J. Berger*

National Institute of Standards and Technology

Gaithersburg, MD 20899, USA

ABSTRACT

This report describes the structure and use of Monte Carlo programs that calculate

the transport of proton beams through extended media. Although more generally

explicable, the programs have been designed to deal with the penetration of 50- to

250-MeV beams through water phantoms. The Monte Carlo model takes into

account multiple-scattering deflections and energy-loss straggling due to Coulomb

interactions of protons with atoms and orbital electrons. Nonelastic nuclear

interactions are treated as an absorptive effect. The PTRAN system at present

consists of several cross-section preparation programs and two main codes,

PTRAN3D and PTRANID. PTRAN3D ^plies to an incident narrow pencil

beam, and calculates (a) the deposition of energy as function of depth and radial

distance from the beam axis, and (b) and the energy spectra of the primary

protons as function of depth. Program PTRANID is a simplified version which

runs faster and omits the calculation of the radial distribution of energy deposition.

*Contractor, work done under NIST contract 50SBN2C7042.





1. Introduction

This report describes a system of Monte Carlo programs for calculating the penetration,

diffusion and slowing down of proton beams in an extended, homogeneous medium. The

objeaive is to provide information useful for treatment planning and dosimetry in proton therapy.

Attention is therefore focussed on the penetration through water of proton beams with initial

energies from 50 MeV to 250 MeV.

The Monte Carlo model is based on the condensed-random-walk method (Berger, 1963),

and takes into account the following types of events occurring in successive short track segments:

(a) energy-loss straggling in Coulomb collisions with atomic electrons, (b) multiple-scattering

deflections due to elastic scattering by atoms, and (c) energy losses in nonelastic nuclear

reactions. The Monte Carlo model can be applied to a variety of transport problems. In this

report, programs are described which calculate the spatial distribution of energy deposition (in

one or three dimensions), as well as energy spectra of protons at various depths in a phantom.

In Section 2, procedures for the simulation of proton tracks are described. In Section 3,

data preparation programs are described which facilitate the sampling of energy losses from the

distribution of Vavilov (1957) and the sampling of angular deflections from the distribution of

Moli^re (1948). With these procedures one can construct Monte Carlo programs for treating a

variety of proton transport problems. Two such programs are described in this report. Section 4

deals with program PTRAN3D, which calculates the deposition of energy as function of depth

and of the radial distance from a narrow pencil beam, and also proton spectra as functions of

depth. Section 5 describes a simpler one-dimensional program PTRANID, which omits the

calculation of the radial energy-deposition distribution. Section 6 discusses the random-number

generators used in the PTRAN programs. Section 7 provides information about the dependence

of the results on the step-size of the condensed-random walk model. In Section 8, the program

and data files are listed which are included in the PTRAN system at the present time.

For the purpose of calculating the spatial distribution of energy deposition, the transfer of

energy from the proton beam to the medium can be treated as a two-stage process. In the

important first stage one considers the spatial distribution of (1) proton energy losses that occur

as the result of Coulomb interactions with atoms or molecules, and (2) of the removal of protons

from the beam due to nonelastic nuclear interactions. In the second stage one takes into account

the further spatial transport of energy by secondary electrons from ionization events, and by

charged particles, neutrons, or gamma rays from nuclear reactions. The Monte Carlo programs

described in this report deal only with the first stage.

The ranges of the secondary electrons are exceedingly short compared to the ranges of the

primary protons. Therefore energy transport by secondary electrons has an effect on depth dose

curves only at very shallow depths, where it gives rise to a rapid dose buildup. In regard to

nonelastic nuclear reactions, one must estimate the fraction of the energy lost by protons that

esc^e in the form of neutrons, x-rays, or fast protons, and the fraction that can be considered to

be absorbed locally. It is also of interest to calculate the energy degradation spectra of the

secondary heavy charged particles. Work on these topics is in progress at NIST by

S. M, Seltzer, and the results will be integrated into the analysis of output from the PTRAN
codes.
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2. Monte Carlo Model

2.1, Schematization.

For the purpose of simulation, proton tracks are divided into many short segments.

These segments are also called the "steps" of a condensed random walk. Energy-losses in

successive steps are sampled from the Vavilov distribution (Vavilov, 1957). The

multiple-scattering angular deflection in successive steps are sampled from the Molifere

distribution (Moli6re, 1948). Nonelastic nuclear reactions are treated an absorptive effect.

Appendices 1 and 2 list the formulas used for calculating the Molibre and Vavilov distributions.

In condensed-random-walk model used in the present work, a proton track (Monte Carlo

history) is described by the following array:

So» Si. S2, —

,

Sn»

Eo» El, E2, En.

Xl. X2, Xn.

yo» yi. y2 . ••••. yn»

Zi, Z2, Zn.

^0 ’ ^
1 . $2 , —

,

^ 1 , <P2 . •••'. ^n»

Wo, Wi, W2, ...., w

(2 . 1 )

The index n pertains to the track characteristics at the end of the n^ step, s^ is the path

length traveled by the proton since its entry into the medium, and As^ = s^^.^ — s^ is the size of

the n^ step. E„ is the kinetic energy; x„, y^ and z^ are spatial coordinates; 6^ and v?n specify the

direction of motion in a spherical coordinate system whose polar axis is the z-axis; is a

survival weight factor which represents the probability that the proton has not been absorbed, in

path length Sn, by a nonelastic nuclear reaction. The index o pertains to the initial conditions, at

the p)oint of entry of the proton into the medium, so that Sq = 0 and Wq = 1.

2.2. Choice of Step Sizes.

Several considerations enter into the choice of the step sizes of the condensed random

walk. In order to reduce the computing time, the steps should be as large as possible. In order

to reduce the error resulting from the neglect of individual collisions, the steps should be as short

as possible. The steps must be sufficiently long so that the Vavilov energy-loss distribution and

Moli^re multiple-scattering distribution are both applicable. On the other hand, the steps should

be short enough so that the energy loss per step is a small fraaion of the proton energy at the

beginning of the step.

In the implementation of the condensed random walk model in the PTRAN system, the

choice of step sizes is made via the adoption of an energy grid at which the various cross sections

and probability distributions are evaluated. This arrangement will be discussed in Section 3.1,

Some numerical experiments were carried out to explore the effects of changing the step sizes,

and will be discussed in Section 7.
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2.3. Energy Loss and Change of Direction.

The energy loss in the n*** step, — E„+j, is sampled from the Vavilov distribution.

The multiple-scattering angular deflection in the n*** step is specified in terms of two angles,

d' and <p\ in a coordinate system whose polar axis coincides with the direction of motion of the

proton at the beginning of the segment. The angle d' is sampled from the Moli^re distribution,

and the azimuthal angle from a uniform distribution between —180 and 180 degrees. The

direction cosines of the proton track at the end of the n*** step are given by

sm9„., cos(0„.i sind' cosv?'

= R • sind' sin^'

cos9„.i cos^'
» t

where R is the rotation matrix

COS0„ COS<PJ^ Sin^n COSV?n

R = cos^n sin^n COS^n sin^n sin<«>n

-sin9„ 0 COS^n

In the PTRAN codes, Eqs (2.2) and (2.3) are replaced by the equivalent equations

cos0„^i

sin((p„^i -
(Pn)

- ^n)

= cos^pcos^' - sin^n sin0' cos^'

sin0'sin^'

cosd' - COS0„ COS^n+i

sin0„sin0„,i

9

(2 .2)

(2.3)

(2.4)

(2.5)

(2 . 6)

When sin^n sin^^+i = 0, then ^^+1 -
<Pn

=

2.4. Change of Position.

Let Ax', Ay', and Az' denote the spatial displacements or the proton in the n^ step, in a

Cartesian coordinate system whose axis coincides with the direction of motion at the beginning of

the step. Taking into account multiple scattering, these displacements are calculated from the

following ^proximate expressions:
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Ax'

A>''

Az'

1
^" sin0' cos^' + kj

sin^' sin^p' + ky (?/6)^^

1 ASn (1 + COS0') .

(2.7)

(2 . 8)

(2.9)

Here 6' and <p' are the multiple-scattering angular deflections, and kj^ and ky are random variables

distributed according to a Gaussian distribution with zero mean and unit standard deviation. The

quantity ^ is the mean-square multiple-scattering deflection which is approximated by
2 2

Xc(B-1.2), where Xc B are variables in Moli6re’s multiple-scattering theory (see

Appendix 1).

The corresponding spatial displacements in a fixed coordinate system are related to Ax',

Ay', and Az' by the rotation matrix R from Eq (2.3):

^n+l Ax'

yn-.!
- yn = R • Ay'

Zn.l - Zn Az'

(2 . 10)

2.5. Nuclear Survival Weights.

The weight factor is treated in PTRAN on the basis of the continuous-slowing-down

^proximation, assuming that

W„(T) = exp
dT'

S(T')

(2 . 11 )

where is a nuclear absorption coefficient that represents the probability, per unit path length,

of a nonelastic nuclear reaction. This coefficient is given by

N
M„uc(T) = a(T) ,nuc

(2 . 12)

where is Avogadro’s number, A the molecular weight, and a the total non-elastic nuclear

reaction cross section.
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3. Data Preparation Programs

Proton stopping powers and ranges were calculated with the program PSTAR (Berger,

1992) which generates results consistent with those tabulated in Report 49 of the International

Commission on Radiation Units and Measurements (ICRU, 1992). Stopping powers and ranges

in water are given in table 1

.

The nonelastic nuclear cross section for hydrogen is negligible. The adopted cross

section for oxygen, shown in figure 1, is based on a fit to experimental results of Renberg et al.

(1972) and Carlson et al. (1975). In the energy region from threshold up to 10 MeV the

energy-dependence of the adopted cross section is modeled after theoretical results (S. M. Seltzer,

private communication) obtained with the GNASH code of Young et al. (1990).

3.1. Program PARAM4.

A sequence of decreasing energies Tq, Tj, T2 , •••, T^,, ..., Tj^ is chosen such that the

difference T^, — has either a constant value AT, or the value kT^, whichever is smaller.

In the exploratory calculations described in this report, five such energy grids were used, with

AT = 4, 2, 1, 0.5 and 0.25 MeV, and with k = 0.05 in all cases.

For each energy interval (T^, T^+i), a path length 6s^, is calculated in the continuous-

slowing-down ^proximation:

where S(T) is the stopping power. The set of path lengths Ss^,, m = 1, M, will be referred to

as a step-size grid. Actual step-sizes are chosen in the PTRAN programs by interpolation in a

table of 6s„ vs. T^.

Various parameters of the Molibre and Vavilov distribution are calculated in PARAM4
for path lengths 6s^, using the formulas in Appendices 1 and 2. The Vavilov parameters are

evaluated for an initial energy T^,. The Molifere parameters are evaluated at an intermediate

energy (Tn, + T„+i)/2, in order to account for the energy loss along the track. PARAM4 also

tabulates the values of the proton stopping power and range, the nuclear attenuation coefficient,

and the survival weight factor W, at energy T^^.

Input Parameters. The user is prompted to provide, from the keyboard, the grid

parameters AT and k, and the starting energy Tq and length M of the grid. On the monitor

screen it is indicated how these quantities can be chosen to obtain the five grids mentioned above.

The user is free, however, to m^e different choices. The user must also specify the names of

the ouftiut files, and suggested names are supplied.
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Input Data Files. The following files are required:

COMPOS.WAT Composition data for water

STOPRANG.WAT Stopping power and range table for water

OXFIT.DAT Cross section for non-elastic reactions of protons with

oxygen nuclei

PARAM4 could be adapted to materials other than water. Small modifications of the source code

would be necessary, which are indicated in the program listing.

Outputfrom PARAM4: Three ouq)ut files are generated:

1) Ouqiut table for inspection by the user, with a suggested name

PARAM4.TBj, where j identifies the step-size grid.

2) A file of data to be used as input for programs VPREP4 and

MPREP4, with the suggested name PARAM4.ARj.

3) A file of data to be used as input to the main Monte Carlo program

(such as PTRANID or PTRAN3D), with the suggested name

PARAM4.PTj.

Output table PARAM4.TBj lists v^ious quantities pertaining to the Molifere and Vavilov

distributions, as well as nuclear attenuation coefficients and survival factors. By inspecting this

table, the user can determine, for example, whether the values of the Moli6re parameter B, as

required, are greater 4.5; or whether the values of the Vavilov parameter are, as required, much
larger than the mean excitation energy of the medium. An excerpt from output file

PARAM4.TB4, for Grid 4, is shown in table 2.

3.2. Program VPREP4 and Related Programs.

Arraysfor Alias Sampling Method. In PTRAN, energy losses are sampled from the

Vavilov distribution by a two-step procedure. First, a random selection is made of a bin in a

histogram of the Vavilov distribution, and then a value of the scaled energy loss is chosen at

random within this bin.

VPREP4 calculates the Vavilov distribution according to Eq (A2.6) as a

function of the scaled energy-loss variable X, the proton velocity and the skewness parameter k

(see Appendix 2). The integral in Eq (A2.6) is evaluated by an adaptive numerical quadrature

code (Kahaner et al., 1989). The distribution is then converted into a histogram with a constant

bin width AX = 0.1.

The random selection of a histogram bin is done by the alias sampling method (Walker,

1974; Kronmal and Peterson, 1979), which has the advantage that a single random number and a

single comparison are sufficient. VPREP4 calculates, from the Vavilov histogram, two auxiliary

arrays which are required by the alias sampling method. This is done with subroutine ALIAS
which is an adaptation of a program developed by Kronmal and Peterson (private

communication).
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Output Options. There are two options, one for production and the other one for testing:

1) Outputfor use in PTRANprograms. The arrays needed for the alias sampling method

are calculated for many grid intervals between specified lower and upper limits. The ou^ut is

stored in a large formatted file with the suggested name VPREP4.ARj, where j indicates the grid.

In order to reduce the time needed to enter these data into the PTRAN programs, a conversion

program VCON4 is used to generate from VPREP4.ARj a corresponding binary file with the

suggested name VPREP4.BRj. Such a file can provide input for Monte Carlo calculations

involving proton beams with many different energies.

2) Outputfor Testing. The output file contains the two alias-method arrays, and the

underlying probability histogram, for a single grid interval. These data can be used as input for

an auxiliary program called VSAMP4, which samples energy losses by the alias method. The

sampled histogram can be compared with probability histogram to verify that the sampling

procedure works correctly.

With this option it is also possible to generate an output file which contains the Vavilov

distribution (rather than a histogram) as a function of the scaled energy-loss parameter X.

Vavilov distributions for grid intervals with starting energies T^ = 25, 50, 100 and 200 MeV
(for Grid 4) are illustrated in figure 2. Program VSUM4 uses numerical quadrature to obtain the

mean value and variance of the Vavilov distribution. This allows the user to check that the mean
value equals T^^ - and that the variance equals the theoretical variance from Eq (A2.13).

Finally, with option 2 it is also possible to omit the Blunck-Leisegang correction, setting e = 0

in Eq (A2.8) of Appendix 2. For the grids used in this paper, this omission would have very

little effect on the calculated Vavilov distributions.

3.3. Program MPREP4 and Related Programs.

MPREP4 calculates the Moli&re distribution for each path length 6Sn,, using the equations

in Appendix 1. The distribution is evaluated at 156 values (between 0 and 40) of the reduced

Molitre angle t?. The spacing of the angles is non-uniform, and increases with increasing t?.

The set of t?-values is contained in file THSET2. A probability histogram with 155 non-uniform

bins is then calculated, and is used to obtain the two auxiliary arrays for die alias sampling

method. There are two output options:

1) Outputfor use in PTRAN programs. The output file contains the two arrays for the

alias sampling method, for the entire grid. The output file is a large formatted file with the

suggested name MPREP4.ARj. Program MCON4 is used to generate a corresponding

unformatted (binary) file MPREP4.BRj.

2) Outputfor Testing. The output includes the two alias method arrays, and the

underlying probability histogram, for a single grid interval. These data can be used as input for

an auxiliary program MSAMP4, which samples angular deflections by the alias method. The

sampled histogram can be compared with input probability histogram, to verify that the sampling

procedure works correctly.
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4. Monte Carlo Program PTRAN3D

4. 1 . Statement of the Problem.

A homogeneous, laterally unbounded medium is assumed to occupy the region z > 0. A
narrow monoenergetic pencil beam of protons is assumed to be incident along the z-axis. The

information sought includes:

(1) dE/dz, the average rate of energy loss by the proton beam per unit depth, as a

function of the depth z. The units of dE/dz are MeV cm^/g. Actually two

such quantities are calculated:

(dE/dz),,, pertaining to energy losses that result from Coulomb interactions with

atoms,

(dE/dz)n, pertaining to energy losses that result from non-elastic interactions with

nuclei.

(2) y(T,z), the proton energy spectrum, expressed in terms of the average track length

per unit depth and per unit energy, as a function of the proton energy T and the

depth z. The units are MeV”^

(3) f(p,z), the radial distribution of the energy lost by the proton beam (in Coulomb

interactions), as a function of the distance p from z axis.

Because of the short range of the secondary electrons, it is a very good t^proximation to

consider the quantity (dE/dz)^ equal to the energy deposition per unit depth due to Coulomb
interactions, (dD/dz)^. As will be shown in a later report, the energy deposition per unit depth

due to nuclear interactions, (dD/dz)„, is approximately equal to 0.6 (dE/dz)^. The discount

factor 0.6 arises mainly from the fact that a large fraction of the energy used for nuclear

reactions eventually escapes in the form of penetrating secondary neutrons.

Also computed by PTRAN3D are the mean energy Tgv(2) the standard deviation

aj(z), which are evaluated as track averages:

(4.1.1)

(4.1.2)
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4.2. Track Simulation.

The simulation of proton tracks is based on the procedures outlined in Section 2, and uses

the data sets generated by programs VPREP4 and MPREP4. Suppose the proton has reached

energy E, and the events in the n*^ step are to be sampled. The step size As^ is obtained by

interpolating to energy E in the table of fis^^ vs T^j. The grid index m is calculated such that T^,

is the closest grid energy to E. The scaled energy loss X is sampled from the Vavilov

distribution, and the scaled deflection angle from the Moli^re distribution, using the alias-

method arrays for grid interval (T^, T^+j). The use of pre-computed distributions for this grid

interval, instead of a distribution for an initial energy E and path length As„, is an ^proximation

which speeds up the calculation. The error incurred thereby is very small because the variation

with energy of the scaled distributions is very slow. From the scaled energy loss X, the actual

energy loss E^ — En+j is determined according to Eqs (A2.1) and (A2.4) of Appendbc 2, using

A^v = ” ^m+i» values of ^ and interpolated to energy E. The multiple scattering

deflection angle 6’ is determined from i? according to Eq (A1.2) of Appendix 1, using a value of

Xc interpolated to energy E.

4.3. Crossing of Scoring Planes.

A set of scoring planes at depths z = z^, f = 1,2,...., is introduced. It is convenient to

define these depdis in terms of fractions b^ of the CSDA range rQ (at the initial energy of the

protons). The scaling of depths in units of rQ minimizes the explicit dependence of dE/dz and

y(T,z) on the energy of the incident beam, and makes it easy to choose scoring planes which

allow a good description of the Bragg peak of the depth-dose distribution.

The values of b^ should extend from zero to at most 1.04. Penetration beyond this depth

is extremely unlikely and of no practical interest. It desirable to space the scoring depths

especially closely in the neighborhood of the Bragg peak, which occurs for b^ close to 0.99.

Suppose that the n^ step of the condensed random walk involves a crossing of the

boundary plane z = Zf. In other words, z^ < Z; < z^+i. Let E^ and Ej,+i denote the

corresponding energies, and cos0„ and cos0n ^.2 Ae corresponding obliquity cosines, before and

after the crossing. Let a = (z^ - Zn)/(^n+i '
^n) denote the fraction of the step that has been

traversed by the proton when the crossing occurs. The energy E^^ at the point of crossing is

obtained by linear interpolation,

= E„ - a(E„-E„.,) . (4.3.1)

The survival factor W^j. = W(Egr), the nuclear attenuation factor = fi(E^r), and the stopping

power Sgj = S(Egj) are obtained by interpolation to energy E^^. The obliquity cosine at the point

of crossing is obtained by liner interpolation,

cos^gr = cos^n + a(cos0n+2 - cos^n) . (4.3.2)

The radial distance at the point of crossing is calculated as

Per
+

(Yn ^ «(yn^l
(4.3.3)

9



4,4.

Crossing Scores.

Four scores are recorded for the crossing, which depend on the cosine of the direction of

motion, cos^g^, and on the nuclear survival weight factor, W^.^, and the stopping power

evaluated at the crossing energy

(1) Scr Wer/cos0„ used to estimate (dE/dz)^, and f(p,z);

(2) ^cr PcT used to estimate (dE/dz)^;

(4.4.1)

(3) 1/cOS^cr used to estimate y(T,z);

(4) SJcosd^^ used to estimate S(T) y(T,z), where S(T) is the stopping

power.

Actually the absolute value of cos^^^ should be used in these scores, but negative values of

cos^gj. were never encountered in all the runs of PTRAN for beam energies from 250 MeV to

50 MeV. Radial distributions are scored by assigning Score (1) to the appropriate radial

histogram bin according the value of Energy spectra are scored by assigning Scores (3) and

(4) to the appropriate energy histogram bin according to the value of Score (4) is not really

necessary, because S(T) y(T,z) could also be obtained by multiplying the Monte Carlo estimate of

y(T,z) with S(T) at the end of the calculation. However, the use of (4) is inherently more

accurate.

4.5.

Scoring of Track Ends.

When the proton energy E falls below a chosen value E^^j, the history is terminated, and

the score Eg^ W(Eg„t) is recorded at the appropriate depth interval of a histogram. It has been

found that diis histogram, as a function of depth, can be represented with sufficient accuracy by a

Gaussian distribution. The track-end scores are utilized by a processing program called PTSUM,
which is discussed in Section 4.9.

4.6.

Input for PTRAN3D.

Input Parameters. The user is prompted to supply the following input data:

NBEG

NFIN

IHIST

= Grid index that specifies the initial proton energy. The relation between grid

indices and energies is given in file PARAM4.TBj for data set j,

= Grid index for the fmal proton energy at which the Monte Carlo histories are

terminated

= Number of Monte Carlo histories to be sampled

IMONIT = Number of histories in group; the set of sampled histories is divided into

(IHIST/IMONIT) groups. After the completion of each successive group,

the number of completed histories is shown on the monitor screen. Results

for different groups are used to determine the statistical uncertainties of

various quantities.
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INRAN = Random number seed for congruential random number generator (should be

odd in order not to reduce the period)

BDFIL Name of the boundary-information file. This file must be prepared in

advance, and should contain the following information:

LBMAX, IBMAX Number of scoring depths and radial bins

(BR(L), L=l,LBMAX) Depths of the scoring planes, in units of

the CSDA range

(MEMAX(L),L= 1 ,LBMAX) Number of energy bins (of equal size)

used to classify proton energy spectra

(EBOT(L), L=l,LBMAX) Lowest energies (MeV) used for spectral

energy classification

(ETOP(L), L= 1 ,LBMAX)

(RTOP(L), L=l,LBMAX)

Highest energies (MeV) used for spectral

energy classification.

Largest radial distance (g/cm^) for

classifying the radial distribution of energy

loss.

Cases in which the crossing energy is smaller than EBOT or larger than ETOP are not

included in the spectrum. Cases in which the radial distance at the time of crossing exceeds

RTOP are not included in the radial distribution. Appropriate values of the arrays EBOT(L),

ETOP(L) and RTOP(L) can be estimated from the results of preliminary results of PTRAN3D.
This will be discussed below in Section 4.8.

Options. The user is prompted by the program to decide whether energy-loss straggling,

angular multiple-scattering deflections, and spatial multiple-scattering displacements should be

included. Except for exploratory model studies, the answer to all three questions should be

affirmative. Finally, the user is asked to specify the name of the output file.

Input Arrays. The user must supply the names of three large input files. File names are

suggested by the program, but the use of these names is not mandatory:

PDAT: Contains cross sections and parameters, generated by program PARAM4;

VDAT: Contains arrays needed for sampling from the Vavilov energy-loss distribution,

generated by program VPREP4;

MDAT: Contains arrays needed for sampling from the Moli&re multiple scattering

distribution, generated by program MPREP4.

Also available must be two auxiliary input files: THSET2 contains a set of reduced angles

required for the sampling of angular multiple scattering deflections. GAUSS.DAT contains data

used for selecting random variates from a Gaussian distribution, which is required for the

sampling of lateral multiple scattering displacements according to Eqs (2.7) and (2.8).
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4.7, Output from PTRAN3D,

File Names. The output file starts with a listing of the names of the input files used for

PDAT, VDAT, MDAT and BDFIL. Then follows the name of the output file. With this

information the user has a complete record of the input data associated with each output file.

Irq)ut Parameters and Options. Next follows a listing of various input parameters and

options used in the run, including IHIST, INRAN, LBMAX, IBMAX, NBEG, NFIN (described

in Section 4.6). In addition, three other parameters are listed which indicate what options were

chosen:

ISTRAG

IMULT

IREF

1: Energy-loss straggling included

2: Energy-loss straggling omitted

1: Multiple-scattering deflections included

2: Multiple-scattering deflections omitted

1: Lateral multiple-scattering displacements included

2: Lateral multiple-scattering displacements omitted

Other Pertinent Quantities. Also listed are:

EBEG
EFIN

RANGE

Initial energy, MeV, corresponding to index NBEG
Final energy, MeV, corresponding to index NFIN

CSDA range, g/cm^, at energy EBEG.

Output Table. The next section of the output file has the form of a table containing the

following quantities:

L

BR

SCORC =

PERCC =

SCORN =

Index of scoring plane

Depth of scoring plane, in units of CSDA range;

(dE/dz)g, mean energy loss per unit depth, MeV cm^/g, due to Coulomb
interactions with atoms, associated with crossing of the L^ scoring plane

Error (percent standard deviation) of SCORC, estimated from the dispersion

of the results obtained with (IHIST/IMONIT) groups of histories

(dE/dz)n, mean energy loss per unit depth, MeV cm^/g, due to nonelastic

nuclear interactions, associated witii the crossing of the L*^ scoring plane

PERCN = Error (percent standard deviation) of SCORN, estimated from the dispersion

of the results obtained with (IHIST/IMONIT) groups of histories

CROSS = Fraction of proton tracks in the Monte Carlo simulation which crossed the L^
scoring plane. Note that nonelastic interactions do not prevent such crossings,

because they are taken into account by means of a survival weight factor.

SCORC, SCORN and CROSS are normalized to one incident proton.
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RMAX

RTOP

EXCESS

= Maximum radial distance from beam axis (g/cm^) with which proton

tracks crossed the L’th boundary in the entire Monte Carlo run.

RMAX is also stored in an auxiliary output file (see Section 4.8). If

RTOP is properly chosen, RMAX is close to and smaller than

RTOP.

= Upper limit (g/cm^) of the radial distance from the beam axis

included in the histogram representing the radial distribution of

energy loss

= Fraction of the energy loss at the scoring depth that involves

radial distances greater than RTOP. Pertains to events that are not

included in the radial histogram.

EBOT (ETOP) Lower (upper) energy limit (MeV) of the spectral histogram

EMIN (EMAX) = Minimum (maximum) energy (MeV) with which proton tracks

crossed the L’th boundary in the entire Monte Carlo run. EMIN and

EMAX are also stored in an auxiliary output file (see Section 4.8).

If EBOT is properly chosen, EMIN is close to and larger than

EBOT, and EMAX is close to and smaller than ETOP.

MEMAX Number of spectral energy bins

MLOW (MHIG) = Number of sampled tracks in which a crossing energy occurred that

was smaller than EBOT (or larger than ETOP) and was not included

in the computation of the energy spectrum

Output Arrays. The part of the output file consists of large arrays for use in other

computer calculations that analyze the output of PTRAN3D.

(i) Energy Losses in Track Ends

DFSUM: Energy,in MeV (per incident proton) lost in track ends

KRMAX: Number of depth intervals (of equal size) in which the

track-end energy losses are scored

ZRMIN, ZRMAX: Minimum and maximum depths (in units of the CSDA
range) between which the track-end energy losses are

scored

(DUMPF(K), K= l,KRMAX): Track-end energy losses, MeV, in various depth intervals

DFSUM and DUMPF are normalized to one incident proton, and provide input needed by

the processing program PTSUM described below in Section 4.6.
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(ii) Track Lengths and Moments ofEnergy Spectra

(TRACK(L), L=1,LBMAX) = average track length per unit depth at various depths

(EMOMl(L), L=1,LBMAX) = average proton energy, MeV, at various depths,

calculated as track average, from Eq (4,1.1).

(ESIG(L), L=1,LBMAX) = standard deviation of the proton energy, MeV, at various

depths, from Eq (4.1.2).

TRACK and EMOMl are normalized to one incident proton. In the computation of

EMOMl and ESIG all events are included, even the rare events with crossing energies E^^

smaller than EBOT or larger than ETOP.

(iii) Energy Spectra and Radial Distributions

For each of the LBMAX scoring depths, the following information is given:

First record: L, BR, MEMAX, EBOT,ETOP, IBMAX, RTOP, where

L

BR

MEMAX
EBOT (ETOP)

IBMAX

RTOP

— index of scoring plane

— depth of scoring plane, in units of CSDA range

= number of spectral energy bins

= lower (upper) limit of spectral histogram, MeV
= number or radial bins

= upper limit of radial histogram, g/cnP’

Subsequent records:

(Y(M), M= l,MEMAX) = histogram of y(T,z), track length, per unit depth and

energy, in individual energy bins. Units are MeV~^.

(YS(M), M= l,MEMAX) = histogram of S(T)y(T,z), track length multiplied by

stopping power, per unit depth and energy. Units are

cnr/g.

(RADC(I),I=1,IBMAX) = fractions of the energy lost in each of the IBMAX
radial bins. Results pertain to energy losses due to

Coulomb interactions.

The histograms Y(M) and YS(M) are normalized to one incident proton. The widths of the

histogram bins is DE = (ETOP-EBOT)/MEMAX. The sum Y(1)+Y(2)...+Y(MEMAX),
multiplied by DE, is equal the track length per unit depth, TRACK(L), listed previously in the

output file. The sum YS(1)+YS(2)+...YS(MEMAX), multiplied by DE, is equal to the

contribution to (dE/dz)j. from scoring-plane crossings.
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The histogram RADC(I) is normalized so that the sum RADC(1)+RADC(2)4-...
+RADC(IBMAX) + EXCESS(L) is equal to unity. The width of the histogram bins is

DR = RTOP/IBMAX. In terms of the radial distribution ftmction,

(4.7.1)RADC(I)

where Rj = (I-1)*DR and Rj = I*DR.

Timing. The last two items of the output file consist of:

Elzqised time for the run, in minutes

Dates and times at the beginning and end of the run.

This information is also displayed at the end of the run on the monitor screen, followed by

the name of the output file.

4.8. Auxiliary Output File.

An auxiliary output file is automatically written, whose name is the same as that of the

regular output file, preceded by X. This file contains the EMIN, EMAX and RMAX arrays for

all the crossing boundaries. TTie arrays obtained in a preliminary run of PTRAN3D can be used

as estimates for the arrays EBOT,ETOP and RTOP, and can be inserted into the boundary

crossing file BDFIL.

4.9. Program PTSUM: Combination of Crossing and Track End Scores

A processing program, PTSUM, uses the output file from PTRAN3D to calculate the total

energy loss (dE/dz)^ due to Coulomb interactions (practically equal to energy deposition (dD/dz)^

by combining the scores from scoring-boundary crossings and from track ends. PTSUM also

checks the accuracy of the calculation, by verifying that (dE/dz)^ + (dE/dz)^, integrated over all

depths, equals the energy with which the proton enters the medium. The output from PTSUM is

stored in two files: a summary table, and a file with arrays useful for further computer

calculations. Table 3 presents a typical summary file, for the case of a 160-MeV proton beam.

The contents of the second output file are as follows:

Name of input file from PTRAN3D
Name of output file from PTSUM
Beam energy Tq (MeV), and CSDA range rQ (g/cm^) at energy Tq

UMAX
(BR(L),L=1,LMAX)
(SCORCT(L),L=l,LMAX) =

(SCORN(L),L=l,LMAX) =
(DF(L),L=1,LMAX)

number of scoring depths

set of scoring depths (in units of rg)

set of values of (dE/dz)^

set of values of (dE/dz)^

contributions to (dE/dz)^ from track ends
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Tables 4 and 5 list results obtained with PTSUM for proton beams with seven energies

between 250 MeV and 50 MeV. Table 4 shows the fraaional contribution from track ends to

(dE/dz)g, as a function of depth, and Table 5 gives the ratio (dE/dz)^ /(dE/dz)^ of nuclear to

Coulomb energy losses, again as a ftmction of depth.

5. Monte Carlo Program PTRANID

PTRANID is a one dimensional version of PTRAN3D, which omits the treatment of the

radial distribution of deposited energy. Again, a narrow pencil beam is assumed to be incident

along the z-axis. However, because of the omission of the radial variable p, results obtained

with PTRANID can be interpreted as applying to a broad parallel incident beam.

In the one-dimensional treatment involving only the variable z, the azimuthal angle (p is

irrelevant, and the changes of azimuthal angle according to Eqs (2.4) and (2.5) need not be

evaluated. Moreover, the lateral spatial multiple-scattering displacements are quite unimportant.

Therefore, Eqs (2.5) and (2.6) are not used, the sampling of and 1^ from a Gaussian

distribution is avoided, and it is assumed that Ax' — Ay' ~ 0. It has oeen verified that the error

incurred thereby is negligible in regard to (dE/dz)g, (dE/dz)^ and y(T,z). As a result of these

simplifications, runs of PTRANID take only about 2/3 of the time needed with PTRAN3D.

PTRANID requires the same input files PDAT, VDAT md MDAT as PTRAN3D. The
boundary input file BDFIL can also be the same as that used with PTRAN3D, but die parameter

IBMAX and the array RTOP, pertaining to the radial distribution, can be omitted. TTie auxiliary

input file GAUSS.DAT is not required.

The output from PTRANID has the same format and content as that from PTRAN3D,
except that die radial energy-loss distributions RADC are omitted. The processing program
PTSUM can also be applied to the output from PTRANID,

6. Random Numbers

Congruential Generator. The random numbers needed in PTRAN3D and PTRANID are

obtained by a congruential generator, which is coded in-line and requires only two statements,

and is therefore very fast:

m=IAND(MASK,IR*MULT)
R=RNORM*IR

IR is a random integer. R is the corresponding real random number (between 0 and 1)

from a uniform distribution, obtained with normalizing factor RNORM = 2’^^

= 4.656612873E-10. MASK has the decimal value 2147483647, which corresponds to a binary

number 0111 1111 1111 1111 1111 1111 1111 1111. The operator LAND, ^plied to the

product IR*MULT, makes the most significant bit of IR zero. The multiplier MULT should be

chosen so that there is a minimum amount of correlation between successive numbers in the

pseudo-random number sequence. The period of the sequence can be shown to be
2^^ = 5.37E-f-08, The initial value of IR (the random number seed) should be an odd integer;

otherwise, the period will be shortened.
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Tests with program PTRANID, using step-size Grid 4, indicated that approximately 1500

random numbers were required for sampling a single proton track from an initial energy of 160

MeV down to 140 keV. Thus the period of the random number generator is such that only

358,000 histories can be generated before the sequence of random numbers repeats itself.

In PTRAN3D and PTRANID, two sequences of random numbers are actually used: IRA
(with a multiplier MULTA = 69069) and IRB (with a multiplier MULTB = 1664525).

According to Knuth (1981) these multipliers give rise to sequences which have a satisfactory lack

of correlation, as indicated by the theoretical spectral test. An IRB sequence is used to provide

random number seeds for successive proton histories. Within each history random numbers

from an IRA sequence are used.

With this procedure one can generate approximately 537 million histories each of which has

a different starting random number seed. One cannot guarantee that there are no repetitions and

overlaps between the random-numbers sets for different histories generated with the multiplier

MULTA. It seems very unlikely, however, that such repetitions will occur often enough so that

they could significantly influence the Monte Carlo results. The best way to reassure oneself is to

m^e comparisons with calculations in which random numbers are generated by a different

generator with a longer period.

Fibonacci Generator. An alternative version of PTRANID, called PTRANIDX, uses a

random number generator due to Marsaglia and Zaman (1987). This generator is based on a

Fibonacci sequence, and is stated to satisfy stringent empirical tests of randomness. The

generator has the very long period 2^ = 1.79E13. In PTRANIDX a subroutine RANMAR from

James (1988) is used, which is an adaptation of the Marsaglia-Zaman generator and generates

random numbers in batches of 1000, thereby reducing the time expended on calls to the

subroutine. There is also an initializing subroutine RMARIN which requires two input numbers

as seeds.

Several numerical experiments were carried out comparing results for the same problem

obtained with PTRANID and PTRANIDX. No statistically significant differences were found in

regard to (dE/dz)^, (dE/dz)„, and y(T,z). However, the required computing time was about 1/3

higher for PTRANIDX than for PTRANID.

Use of Intrinsic Random-Number Generating Function. Many Fortran compilers provide an

intrinsic function that generates uniform random numbers, usually by the multiplicative

congruential method. As a convenience for users who would like to use such an intrinsic

function, another version of PTRANID, called PTRANIDY, was prepared. In this version

random numbers are assumed to be generated by an intrinsic function RND, and the random

number sequence is started by an intrinsic function RANDS (x), where x (a real number between

0 and 1) is the random number seed.
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7. Influence of Step-Size Grid

Runs of program PTRANID, for a proton beam energy with an initial energy of 160 MeV,
were made with five step-size grids, as described in Section 3.1. The grid parameter AT and the

computing times for sampling (and scoring) 1 million Monte Carlo histories down to an energy of

140 keV was as follows:

Grid AT
(MeV)

Time

(Minutes)

Relative

Time

1 4 162 1.0

2 2 190 1.17

3 1 263 1.62

4 0.5 475 2.93

5 0.25 750 4.63

These runs were made using a personal computer with a 25 Mhz 486 processor and a Weitek

4167 coprocessor.

In regard to the quantity (dE/dz)^ the differences between the results obtained with different

grids were small: less than 0.1 percent for depths z < 0.9 ro; less than 1 percent for 0.9

ro < z < 1.01 rQ, and less than 3 percent for z = 1.02 rQ.

Larger differences were found in regard to the track-length distribution y(T,z). Figs. 3, 4

and 5 , for depths z = 0.1 rQ, 0.5 rQ, and 0.9 rQ, respectively, for a beam energy of 160 MeV,
shows the percentage amounts by which y(T,z) obtained with Grid 2, Grid 3, or Grid 4 differs

from the value obtained with Grid 5. The differences are 1 to 3 percent in the central region of

the spectrum, but are considerably larger in the wings of the spectrum.

Comparison runs were also made of radial distributions calculated with program

PTRAN3D, with Grids 1, 2, 3, and 4. Results are shown in Figs. 6 and 7 for a 160-MeV beam
of protons, at a depth z = 0.1 rQ. In addition to the Monte Carlo histograms, smooth curves are

shown which represent the radi^ distribution calculated from the theory of Moli^re (1955), with

energy-loss taken into account in the continuous-slowing-down approximation.

The Monte Carlo results in figure 6 were obtained without taking into account the spatial

multiple-scattering displacements, i.e., setting Ax' = Ay' = 0 in Eq (2.10). It can be seen that

the finer the grid the closer the histograms approach the curve from the Moli&re theory. In

figure 7 a similar set of results is shown, which were obtained with the lateral multiple-scattering

displacements included. In this case there is little variation from one grid to another.

It is interesting that the Monte Carlo results obtained with Grid 4 (in fig. 6) or with all

grids (in fig. 7), agree well with the curve from the Moli^re theory. Similar agreement was also

obtained at other depths. The implication is that the use of PTRAN3D is not really necessary,

but could be replaced by the combined use of PTRANID and the Moli^re theory. Of course this

could only be done for depths smaller than the CSDA range. Beyond the Bragg peak the

PTRAN3D program is still needed.
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8. Program and Data Files

Users can obtain from the author of this report a 3.5 inch, 1.44 Mb disk with four archive

flies, named PARAM.EXE, VPREP.EXE, MPREP.EXE and PTRAN.EXE. The contents of

these files are listed in table 7. The archive files are self-extracting. For example, by running the

program PARAM one recovers all the individual files stored in the archive file PARAM.EXE.

Included among the files in VPREP.EXE and MPEP.EXE are the formatted files

VPREP4.ARj and MPREP4.ARj, j
= 2,3,4, but not the corresponding binary files VPREP4.BRj

and MPREP4.BRj which are needed to run PTRANID or PTRAN3D. The reason for this

omission is that binary files are in general not portable, and depend on the type of computer, and

on the compiler used. The user can easily generate the binary files with the VCON4 and

MCON4 programs.
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Appendix 1. Moli^re Distribution

According to the theory of Molibre (1948), the distribution of multiple-scattering angular

deflections can be expressed as a unique function of a scaled angular variable t?:

FM(^)t5di? t?dt? ...
B

(ALl)

The relation between the scaled angle and the actual multiple-scattering deflection angle 6 is

(A1.2)

where Xc and B are functions of the particle energy and the path lengdi As.

Moli^re’s theoiy was developed in the small-angle approximation, and is applicable when

the multiple scattering angles 6 are no greater than approximately 20 degrees. In the present

application to protons this is not a significant restriction. The expansion in inverse powers of B
in Eq (Al.l) is accurate only when B is larger than about 4.5. As discussed by Molifere, the use

of additional terms in the expansion would not significantly increase the accuracy, because of

^proximations made elsewhere in the derivation of theory.

The expansion coefficients in Eq (Al.l) are given by

i
I

“ ydy Jo(i?y)

(A1.3)

when Jq denotes a Bessel function.

The quantities f^^^ and f^^^ were first tabulated by Moli^re (1948), and later by Betiie (1953)

and Scott (1963). In the course of the present work an even more extensive table of coefficients

was calculated. This table includes values of f^^^ and f^^^ at 131 values of ^ between 0 and 2.6,

and 331 values of and at 331 values of between 2.4 and 60.0. The new results

are contained in the files MOLCl.COF and MOLC2.COF distributed with the PTRAN
programs.

For a compound, Xc is obtained as a sum over the corresponding quantities for the atomic

constituents:

2 2
Xc ~

^cj ’ (A1.4)
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where Wj is the fraction by weight of the j**' atomic constituent, and

4 =

Here is the Avogadro constant, and Aj are the atomic number and atomic weight of the

constituent, r^ is the classical electron radius, m/M is the electron-proton mass ratio, r is the

proton kinetic energy in units of the proton rest mass, and As is the path length.

The Moli^re parameter B depends on the ratio of the characteristic angle Xc ^ ^ screening

angle Xa> is obtained from the equation

B -logB = log ixJXaf’ + 1 - 27 ,
(A1.6)

m
M

T-t-1 1

t(t+ 2
)J

a
Aj

As (A1.5)

where 7 = 0.5772156649., , is Euler’s constant. This equation can be easily solved iteratively by

Newton’s method.

The screening angle Xa is given by

with

logx^ = (l/x3 E WjXej [logx^j - Fj/Zj

‘aj

2

m a

M kxF
1.13+3.76 (ZjO//3)^

Zi
2/3

t(t + 2)

(A1.7)

(A1.8)

Here k^p = (971^)^'^^ 2”^^^ = 0.88534... is a constant associated with the Thomas-Fermi model,

a is the fine-structure constant and /3 is the proton velocity in units of the velocity of light. The

quantity in square brackets in Eq (A1.8) is an approximation obtained by Moli^re with a

Thomas-Fermi potential. The correction factor kjjp (which depends on Z^aiP) converts the

screening angle to one corresponding to a Hartree-Fock potential, and was calculated by Berger

and Wang (1988), using a formulation of Molifere’s theory given by Zeitler and Olsen (1964).

Values of kjjp for selected elements are given in table 8 .

The term Fj/Zj in Eq (A1.7) is an addition to Moli6re’s theory, due to Fano (1956), that

takes into influence of the orbital electrons. Fj is given by

Fj = log[ll30/?2 (1-^^)'^ (A1.6)

where the constant Uj has value -3.6 for hydrogen and -5.1 for oxygen.
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Appendix 2. Vavilov Distribution

The distribution of energy losses from the theory of Vavilov (1957), Fy(X,/3,/c), is a

function of a scaled energy-loss variable X, and also depends — more weakly — on 0 and on a

skewness parameter k defined below. For small k, the Vavilov distribution ^proaches the

Landau distribution (Landau, 1944), whereas for large k it approaches a Gaussian distribution.

The relation between the scaled energy-loss X and die energy loss A is

X =
A-Aav

+ X,av
(A2.1)

where A^y is the average energy loss, and

{ ,
(A2.2)

j

Here r^ is the classical electron radius, mc^ the electron rest energy, and Aj, and Wj are the

atomic number, atomic weight and fraction by weight of the j* atomic constituent. The quantity

Xgy in Eq (A2.1) is

^av
= + 7 - 0

^ - log /c ,

(A2.3)

where y = 0.5772156649... is Euler’s constant. The skewness par^neter k is

where

-M
2mc^/3^

1 -/3
^

9

(A2A)

(A2.5)

is the maximum amount of energy which a proton can lose in a collision with an orbital electron

(considered as free).

The quantity ^ has the following significance. In a path length As, diere will occur, on the

average, one collision with an orbital electron in which the proton loses an amount of energy

greater than The Vavilov distribution is accurate under two conditions: (1) the path length

must be long enough so that | is much greater than the mean excitation energy of the material

(75 eV for water); (2) The path length must be short enough so that the me^ energy loss A^y is

small compared to the initial proton energy.
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The formula for the Vavilov distribution is

Fv(X,/3,K)dX =
-^ j

expjhj
(y)]

cos[h2 (y)]
dy ,

(A2.6)

where

hiO-)'* fi(y)
-

»

(A2.7)

h2(y) = «[y(X + log/c) + f2 (y)] ,

(A2.8)

fi(y) = /3^[logy - Ci(y)] - cosy -ySi(y) ,

(A2.9)

= y [log y “ Ci(y)] + sin y + ^^Si(y) ,
(A2.10)

Si(y) = f

^
dt (sine integral) ,

Jo t

(A2.11)

f ^ cos t
Ci(y) = 7 + logy - dt (cosine integral) .

Jo t

(A2.12)

Efficient methods for evaluating the sine and cosine integrals by series expansions and rational

^proximations can be found in Abramowitz and Stegun (1964).

The quantity € in Eq (A2.7) is a binding correction which was applied Blunck and

Leisegang (1951) to Landau’s theory and by Shulek et al. (1959) to Vavilov’s theory. As shown

by Fano (1963) the variance, 0^, of the energy-loss distribution is

={Em(1-^^/2)(1*«) ,
(A2-‘3)

with

2S,
e =

Em( 1 -r/2)
log

2mc (A2.14)
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Sj and Ij are averages taken over the oscillator strength distribution:

(A2.15)

(A2.16)

where df/dE is the density of optical dipole oscillator strength per unit excitation energy, E,

above the ground state. In the present work, experimental values for these quantities were used,

from a compilation of Zeiss et al. (1977): Sj = 191.2 eV, Ij = 939.9 eV. These values were

obtained for water vapor, but is expected that their use for liquid water will cause little error.

With these input data one obtains the following values of e:

Energy (MeV) = 200 100 50 20 10 5.13 3.97

€ = 0.00554 0.00973 0.0168 0.0238 0.0553 0.0849 0.0984

Straggling measurements by Besenbacher et al. (1981) for protons in low-Z gases suggest

that at low energies Eq (A2.14) overestimates 12^. In the present work, Eq (A2.14) was therefore

used only down to an energy where e reaches a limiting value = 0.1. Below that energy, e

was kept constant.
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Table 1. Proton stopping powers and ranges in water. Calculated assuming a mean excitation

energy I = 75 eV.

T - Proton energy, MeV
STOP(e) - electronic stopping power, MeV cmVg
STOP(n) - nuclear stopping power, MeV cmVg
STOP(t) - total stopping power, MeV cm^/g

RANGE (c) - CSDA range, cmVg
RANGE (p) - projected range, cm^/g

DETOUR - detour factor - RANGE(c)/RANGE(p)

T STOP(e) STOP(n) STOP(t) RANGE(c) RANGE (p) DETOUR

0.1000 8 . 145E+02 1.620E+00 8.161E+02 1.607E-04 1.458E-04 0.9073
0.2000 6.604E+02 9.016E-01 6.613E+02 2.966E-04 2.806E-04 0.9460
0.3000 5.497E+02 6.351E-01 5 . 504E+02 4.631E-04 4.462E-04 0.9635
0.4000 4.714E+02 4.928E-01 4.719E+02 6.599E-04 6.422E-04 0.9731
0.5000 4.128E+02 4.043E-01 4.132E+02 8.869E-04 8.683E-04 0.9790
0.6000 3.676E+02 3.438E-01 3.680E+02 1.144E-03 1.124E-03 0.9829
0.8000 3.037E+02 2.658E-01 3.039E+02 1.745E-03 1.724E-03 0.9877
1.0000 2.606E+02 2.173E-01 2 . 608E+02 2.458E-03 2.435E-03 0.9905
2.0000 1.585E+02 1.157E-01 1.586E+02 7.555E-03 7.519E-03 0.9952
3 . 0000 1.171E+02 7.972E-02 1.172E+02 1.499E-02 1.494E-02 0.9965

4.0000 9.398E+01 6.113E-02 9.404E+01 2.458E-02 2.451E-02 0.9971
5 . 0000 7.906E+01 4.970E-02 7.911E+01 3.623E-02 3.613E-02 0.9974
6.0000 6.854E+01 4.195E-02 6.858E+01 4.984E-02 4.972E-02 0.9976
8.0000 5.456E+01 3.208E-02 5.460E+01 8.277E-02 8.259E-02 0.9978

10.0000 4.564E+01 2.603E-02 4.567E+01 1.230E-01 1.228E-01 0.9980
15.0000 3.290E+01 1.778E-02 3.292E+01 2.539E-01 2.535E-01 0.9982
20.0000 2.605E+01 1.356E-02 2.607E+01 4.260E-01 4.252E-01 0.9983
30.0000 1.875E+01 9.239E-03 1.876E+01 8.853E-01 8.839E-01 0.9984
40.0000 1.487E+01 7.034E-03 1.488E+01 1.489E+00 1.486E+00 0.9985
50.0000 1.244E+01 5.691E-03 1.245E+01 2.227E+00 2.224E+00 0.9985

60.0000 1.078E+01 4.786E-03 1.078E+01 3.093E+00 3.089E+00 0.9986
70.0000 9.555E+00 4.134E-03 9.559E+00 4.080E+00 4.075E+00 0.9986
80.0000 8.622E+00 3.641E-03 8.625E+00 5 . 184E+00 5.176E+00 0.9986
90.0000 7.884E+00 3.255E-03 7.888E+00 6.398E+00 6.389E+00 0.9986

100.0000 7.286E+00 2.944E-03 7.289E+00 7.718E+00 7.707E+00 0.9987
110.0000 6.791E+00 2.689E-03 6.794E+00 9 . 140E+00 9.128E+00 0.9987
120.0000 6 . 374E+00 2.475E-03 6.377E+00 1.066E+01 1.065E+01 0.9987
130.0000 6.018E+00 2.294E-03 6.021E+00 1.228E+01 1.226E+01 0.9987
140.0000 5.711E+00 2.137E-03 5.713E+00 1.398E+01 1.396E+01 0.9987
150.0000 5.443E+00 2.001E-03 5.445E+00 1.577E+01 1.576E+01 0.9987

160.0000 5 . 207E+00 1.882E-03 5.209E+00 1.765E+01 1.763E+01 0.9988
170.0000 4.997E+00 1.777E-03 4.999E+00 1.961E+01 1.959E+01 0.9988
180.0000 4.810E+00 1.683E-03 4.812E+00 2.165E+01 2.163E+01 0.9988
190.0000 4.642E+00 1.598E-03 4 . 644E+00 2.377E+01 2.374E+01 0.9988
200.0000 4.491E+00 1.522E-03 4.492E+00 2.596E+01 2.593E+01 0.9988
210.0000 4.353E+00 1.453E-03 4.354E+00 2.822E+01 2.819E+01 0.9988
220.0000 4.227E+00 1.390E-03 4.229E+00 3.055E+01 3.052E+01 0.9988
230.0000 4.112E+00 1.332E-03 4.114E+00 3.295E+01 3.291E+01 0.9988
240.0000 4.007E+00 1.279E-03 4.008E+00 3 . 541E+01 3.537E+01 0.9988
250.0000 3.910E+00 1.231E-03 3.911E+00 3.794E+01 3.790E+01 0.9989

27



Vo
X
U

C3

E-

iH rH iH rH fH fH fH iH fH fH
O O O O o O O O O O O O

> w M w w M w w w w w w w
2 O) O rs. iH CO o CO rs. fs. rs. rs. ^S
5 40 O o a> CD to to CD CO
CO rs. CO 00 eg O) O) 40 eg eg N eg eg

fs. 0) 40 eg 40 CD CO CO CO CO CO CO
CO rs. o> CO 00 CO CD CD CD to CD CD

o> 00 rs fSs CD CO CD CD to to CD CD

CO CO eg eg eg eg eg o o o o o eg eg eg rg rg o O o o o oo o o o o o o o o o o o o o o o o o o O o o o o
+ + + + + + +u w M M M M w w w w M M w < M w Ui Ui Ui Ui Ui Ui Ui IP IP IP

CO rs. (O o CD CO CO o o o o o pg OO cn Oi CD 00 eg A 4 A o> o
CO rv CD eg rss 4 CO o o o o o rs. cn eo fs. eg rg A cn eo O) 4 eg

H O) rs. eg 4 4 CO 00 o o o o o 00 eo eo QO Oi o Oi r^ CO CO 4 eg
H f-* CO o OO rs» CD 4 o o o o o CD CD CO o a> Oi eg CO 4 eo a>
< m rsk <3 o CO r^ eg o o o o o

4 CD 00 CO 00 A eg eg eo 4 CO
O) O) fH fH rg o o o o o
<«• CO CO (O CO CO CO CO CO (O eo iH fH rg fH rg eg eg eg eo eo CO 4o o O o o o o o o o o o O O o O o o o o o o o O
w M M u M M M M w M w M M Ui Ui Ui w Ui M w IP IP IP IPW eg <4* OO 40 O) 40 eg N o to CO CO fs. eo Oi CD eo 4 rg 4 Oi 4 eo fs
eg C3 rs. o CD CO oo CO 4 00 00 CO iH fH QO 4 00 <o o CD fs. eg fs.

< «r 40 00 4 O CO 00 O) rv eg o CO r*^ eg eg Oi fH o Oi eg 4 CD rH fH
C) oo iH CD 40 eg eo CO eg oo to CD rg 00 cn N rg 4 A fH 4 tH fH 4
CO CO O O CO o 4 fH eg eg eg iH 0)

CO 4 eo eg iH 4 eg 4 eg 4
r*. o> fH eg CO CO 40 CO lO CO 4

rH fH fH fH fH fH eg N N eg eg eg eg eg eg eg
o O o O o o o O o O O O o O O o o o o o o o O O

1 H + + + + g- +w u M M w w w w M u U4 < Ui M Ui u Ui Ui Ui Ui IP IP IP IP
40 O) 4* eg fH o O) N 4 4 eg 4 2 CO rg 4 eg cn o 4 o CO 00 o 4

< o 40 CO o CO eg fO fH to 4 4 IH r^ 4 eg cn CD 4 eg G) eg 4 CD
u o CO CO o fH eg CO CD to eg OO CO CO cn 4 CD 4 N rg o fs, o 4 fH
CO CO CO fH O o r^ eg rg fH CO 4 X CO cn o eg CD eg 00 4 to o 4 O

CO 40 O o fH CO CO o rg rH CO
CO eo 4 4 4 cn cn CO fH iH CD 4

rN eg CO 40 rs. rs. CD QO OO CD

iH fH fH fH fH fH o o o O o eg eg eg eg N eg eg eg eg CO eo eo
o O O O o O O o o o o o o o o o O o o o o o o o
+ + + + + + + + + + + + 1 1

w M w w w U4 u w M w M Ui IH Ui Ui M Ui M Ui Ui Ui IP IP IP IP
iH CO o CO CD O) CO 40 o o 4 Oi CO eg 00 Oi CD in CO in Oi fs. o 00

n eg CD CD CD rs» rs. 00 eg 40 eg o X eo CD CD CO 00 o> o Oi o eo CO
•«T eg o rs. O) CO CD 00 4 CO 00 Oi cn 4 oo cn fH CD cn m eg eo rH
CO CO eo eg eg o O) 40 QO rg CO rs. oo Oi O fH 4 Oi eo m eg cn CO o

fH fH o 0) CO o CD rs.

eg eg eo eo CO eo 4 eg fH fs. 4 eo
iH fH fH fH fH fH O) CD rs. CO CO

CO CO CO CO CO CO CO CO eg eg fH fH CO eo eo CO eo eg eg eg eg eg eg eg
o o o o o o o o o o O o o o o o o o o o o o o o
+ + + + + + + + + + 4* + 1 1

w M w Ui M 44 u w w W U u eg Ui w Ui Ui Ui M Ui Ui IP IP IP IP
o o Oi C3> 4 o 0) CM CD o fH eg eg H eg o fH Oi o O eg Oi eg fs. eo G>
u 40 40 fH CO rx 4 G) eg CO fH 00 A to cn CD O) O) to 00 eo o> 4 fs. CO

CO Oi eg CD eg CO CO «H CO rH CD o W CO eg cn A o cn eo eg 00 Oi Oi Oi
r*. 4* o> (O 4 4 O rs. fH CO 4 CO a oo eo o 4 o CD rs. eg 00 ca Oi Oi
CD 40 CO rs. 0) o 4 QO Oi CO

tH eg CO 4 CO fH eg 4 4 4 4 4
CO eo QO flO rs. CD CD eg to fH 40 rg

•rT *4* 4* 4 CO CO CO CO eg eg eg fH eo eo (O eo eg eg eg eg fH rH rH
O O O O o o o o o o o o o o o o o o o Q O O O O

< M M M w M w M M M w M M Vi u Ui Ui Ui Ui Ui Ui M IP IP IP IPM •4* O) eg fH O) 40 40 CO 00 00 CO Pg G) CD eg o Oi Oi 4 o o o o o
X rx. O) CD C7> eg o rs. 4 CO CO o CD w rs. rs. eg eg 4 A 4 4 o o o o
u o O) o CO CO 00 CO G) a> 40 00 Oi CO CO CO 00 eo G> o o o o

CO O) 40 eg fH CO 0) 00 fH 40 4 CD CO cn o rs. CD eo cn 4 o o o o
fx.. eg fH CD O 00 O) G> rg eg 4 rg

4 cn r^ a> fH eo cn CO r^
CO <4* CO CD fH eg 4 fH eg 4 fH

eg eg eg eg eg rg fH fH iH rg eg eg eo eo CO CO 4 4 in in CD CO
o o o o o o O O o o o o o o o o o o O O o o o o

{.) M M M w M M u u u M M w 2 Ui M Ui Ui M M M Ui IP IP IP IP
H-l O <• eg O o G) CO Oi eg 40 CD < rg eg QO 4 00 4 eg 4 eo eg CO eg
2 40 (7> 4- CD N CD O CO rs. r^ CD o > CD 4 rs. O OO rs. eo fs. Oi r< o 4
O •4* 40 CO CD O o o rs CO rs. 40 m O eo O eo 4 fs. OQ 4 Oi iH CO

fs. rs. fH 00 CD CO eg CD ID tD eg Oi 4 eg 4 rs. rs. rs. a> O r^ fs. O) 4
H •4* o> es. O) O) 40 CO 4 O 4 eg
u fH Oi to eo rg O) CO CD rH cn fH

9
CO CO 4- 40 00 eg eg eg CO CO 4

>
o G 4i o o o o N N eg eg • fH rg fH fH rg fH fH fH eg N eg

0 G o o o o o o o o o o o o 9 a: O O o O O o O CO O o o o
> •H 9 + + + + + + + + + + + + eg < U 1 1

9 •0 U > M M M w W w w w w M M Ui * > 60 > w w Ui M M Ui u IP IP IP IP IP
a: •H O 9 < eg eg CO eg v\ CD 4 eg 40 CD CO oo * o CO < o o o O O o Oi r^ in Oi CO 0

•H 9 04 cn eg fH rs. eg o rs. CO G> CO 00 4 > B A B Q o o o O O o Oi CD Oi A eg eo
«M o fH •4- O) G) O) eg rs. G) eg Oi CO 9 .H G X 0 o o o o o o Oi ID A fs. cn rH

4^ o «M U H *H Oi sT O) 4 CO 40 G) G> tD CO <o A 2: •H 60 •H o o o o o o Oi cn O o> cn OM CVJ c U O 3 CO O) •4- 4 eg eg CO CD oo CO CD CD G -0 ig 9
fri CD > 9 0 B > 9

Td
9 > 9 cn cn cn cn cn cn 4 eg rH 4 eg rH

W 9 > R e <M U CO 4’ 40 rs. eg 4 fs. fH eg 4 CD 9 p > A •0 o G rHH ai: 9 <•> 3 O o s 60 O 9 G 3 rg 9 rg
c/a a: 9 CD B •H rH rH eg eg eg eg eg CO 4 4 CO 40 9 a: 9 fH •H o fH eg eg eg eg eg eo 4 4 cn cn
2 60 9 M O 4) O O o o o o o o O O o O 9 60 B O > G u O o o o o o o o O O o o

9 •H 40 1 A 3 G 9 O 1 1

4i C -G (M A eg 4^ « 01 u u u u u u M w u Ui M Ui G M • G 9 •H > > H 9 pg w Ui M Ui Ui M Ui Ui IP IP IP IPO O c 9 G 0 1 9 W 40 4' CD CD 0) 4 rs. CO eg Oi CO CO G 9 o A 9 9 9 A A W cn CO CD 4 CD cn eg eg cn eo Oi
< o o u 9 c 3 3 o H rH 40 rs. 40 CO CD 4 eg eg 4 CO CD 9 R 9 G B B c a: 9 60 JH CO eg cn Oi eg Oi eo Oi 4 fH cn fs.

o u «2> u « 4^ C B CO eo eg 40 O) eg o> CO G> 4 rs. CO rs. B 60 U 9 3 G O A A B CO rs. fH rs. 4 o Oi fs. 4 O CD CO eg
u-> «0 9 3 u G n o B rv rs. 4 o o> rs. 4 O CD CD eg 60 9 A R 9 •H •H •H •H eg iH fH CO o 00 o eg 4 OO m
O) 9 n 9 3 9 4> 0 N OO o OO o eg 4 00 rg CO 9 9 60 40 A B Q CO

» 9 9 0 60 4^ B 9 <M 9 19 O p 9 K CO Oi CD 4 fH lO CO r4 CDo (M « a* « 4d 9 »H fH O) to 4 fH fH CO to fH CO fH CM O 10 B IQ 9 9 K 9 fl 04M o <M •0 M 60 M M 0 •ri 0 U A •H 04
o O « 9 cr >» O O o o O O O Oi Oi 4 rg O o 60 M U B 40 fH fH rg fH eg eg eg eg eo CO CO 4
m «o U Ed > n •o «0 O 4^ O o o o O O o o o 40 fs. rs. 9 60 B Q 9 0 • 9 S 10 M O O o O o o o o o O O O
M c « 9 •H o o o o O o o 40 00 0) fs. rs. U B •H 9 «a >% U A 9 M 1

•H c M M a> 4^ > 40 40 40 40 40 40 CO o 00 CD Oi G) •H B M 0 60 or 9 B o U Ui M Ui w Ui Ui Ui M IP IP IP IP
c •H 4^ 9 1 • 9 •H < r*» rs. fs. rs. rs. rs. rs. o Oi G) 4 fH g B 4^ fH U 60 «Q s ^4 9 O eg 4 rs. in rs. CD o CO eo CO eg fs.

c 0 4J n 9 A H CM g fg 9 B 3 o A n m cn CD eo eg o CO cn eg CD fs. o
O G* <M U N O 3 3 O) C7> O) O) O) a> G) 40 fH O O O o .H 60 CM >s G <9 40 M A X 9 CD o CD eo to eo Oi oo eo rH CD eg

«o *o 0 9 60 60 « S 4J •0 « J3 -4* O) 4 O) 4 60 9 O 60 9 60 9 60 i rs. eg cn 00 00 fH o o eo iH o eo
M 9 X 9 9 « 9 0 B 0 eg u 9 A M o o 04 -H M 3
9 u *C o •o •o U tr £ 0 M 9 A A <9 CM IQ 1 M 9 u eo eo eg A a> 4 eg fH 4 eg 4

«H N 4^ a < a (0 D B 04 A A B 0 •H fH 60 K G 9
0L4 O) R 60 * M 04 « R A 9 60 9 O B 9 04W ««• 3 « « c 60 m rH o O o o O o O eg fs. o fs. rs. 3 9 B 9 A s..^ •H CM o o o O o O o eg rs. o fs. fs
l-» c o G O « u o o O M « o O o o o o o 4 O 4 4 rs. B eg 9 9 O 1 CO fH 0 > o o o o o O o 4 o 4 4 fs
CO >% >v ^ •H •G .P M A CD 9 > o o o o o o o CO Oi 4 O eg >v « rg 60 B M 04 60 o o o o o o O o eo Oi 4 O eg2 K 00 OC G4 3 3 U 'O 3 9 •H l-t o o o o o o o CO CO Oi fH o K 60 « 9 9 u Ui 60 0 fH 1-4 o o o o o O o eo CO Oi iH o

9 M M u* « « M -H <0 > o o o o o o o fH o Oi CO eg 9 U 9 A M •H B * 9 •H •H •H o o o o o O o fH o Oi cn egn 9 « 4J 0 m ^ •H O M *0 9 A A CD u 3 CO U A K >
Qli o c G C « 4) u i2 .c 04 3 3 o o o o o o o 40 eg o O o B G 9 9 > 9 rg A 9 9 CO o o o o o O o cn eg o o o
U4 m 9 • o< 10 u u u B 10 •o o 40 o 40 eg fH 9 A 04 C0 > (Q o 9 U B > in o cn o cn eg A

eg eg fH eg eg fH fH
COH o

2 H > (l4 > CJ < PQ W O > 2 H <7 pg > 2 CO eg M H << w < »-l O <4 w 2 2 fH •H fH fH 4 eg CD Oi m Ui < < 04 H CO < pg 2 rg rg fH fH fH rg A 4 eg CD Oi fsH tH 04 m E° U < 5 r^ »H rs. G> O eg CO 4 CD H Q > Ui A X 2 5i iH fH fH fH r^ Oi O eg CO 4 CO
CO o u 0 u < H CO eg CO 4 4 4 40 CO 40 CO 40 CO Ui M rg N eo 4 4 4 in cn cn cn cnH CO C) H o ro

CO CO < X

28



Table 3. Sample output from program PTSUM

Input file: PTRAN3D.TST
Output file: PTSUM.TST

PARTITION OF ENERGY LOSS IN ENTIRE PHANTOM:

(a) Initial proton energy: 160.000 MeV
(b) Energy lost In Coulomb Interactions: lA 1.929 MeV

Contribution from boundary crossing scores:! 1A1.813 MeV
Contribution to from track ends ; 0 . 116 MeV

(c) Energy lost In non-elastic nuclear Interactions; 18.06A MeV
(d) Sum of (b) and (c): 159.993 MeV

PARTITION OF ENERGY LOSS AT VARIOUS DEPTHS:

z/r

C( cross)
C ( end

)

C
N

depth In units of CSDA range
r - 1.765E+01 g/cin2

Coulomb Interactions, crossing of scoring boundaries
Coulomb Interactions, track ends

C ( cross )+C( end)

non-elastic nuclear Interactions

Average Energy Loss per Unit Depth, MeV cm2/g

z/r CCcross

)

C(end) C N C+N C(end)/C N/(C+N)
0.000 5.207 0.000 5.207 1.592 6.798 0.00000 0.23A13
0.100 5.333 0.000 5.333 1.A83 6.816 0.00000 0.21761
0.200 5.A91 0.000 5. A91 1.375 6.866 0.00000 0.20026
0.300 5.692 0.000 5.692 1.267 6.959 0.00000 0.18205
O.AOO 5.952 0.000 5.952 1.158 7.111 0.00000 0.16291
0.A50 6.113 0.000 6.113 l.lOA 7.217 0.00000 0.15297
0.500 6.300 0.000 6.300 1.0A9 7.350 0.00000 0.1A276
0.550 6.522 0.000 6.522 0.99A 7.516 0.00000 0.13228
0.600 6.787 0.000 6.787 0.939 7.726 0.00000 0.12150
0.650 7.112 0.000 7.112 0.882 7.99A 0.00000 0.11036
0.700 7.520 0.000 7.520 0.82A 8.3AA 0.00000 0.09877
0.720 7.71A 0.000 7.71A 0.800 8.515 0.00000 0.09397
0.7A0 7.932 0.000 7.932 0.776 8.707 0.00000 0.08907
0.760 8.177 0.000 8.177 0.750 8.927 0.00000 0.08A06
0.780 8.A55 0.000 8.A55 0.72A 9.180 0.00000 0.07890
0.800 8.776 0.000 8.776 0.697 9.A73 0.00000 0.07360
0.820 9.150 0.000 9.150 0.669 9.819 0.00000 0.06811
0.8A0 9.593 0.000 9.593 0.639 10.232 0.00000 0.062A1
0.860 10.131 0.000 10.131 0.606 10.737 0.00000 0.056A5
0.880 10.801 0.000 10.801 0.571 11.372 0.00000 0.05020
0.900 11.668 0.000 11.668 0.532 12.201 0.00000 0.0A36A
0.910 12.210 0.000 12.210 0.512 12.722 0.00000 0.0A025
0.920 12.85A 0.000 12.85A 0.A91 13.3A5 0.00000 0.03679
0.930 13.638 0.000 13.638 0.A68 1A.107 0.00000 0.03320
0.9A0 1A.625 0.000 1A.625 0.AA3 15.068 0.00000 0.02939
0.950 15.930 0.000 15.930 0.A12 16.3A2 0.00000 0.02523
0.955 16.772 0.000 16.772 0.39A 17.166 0.00000 0.02295
0.960 17.795 0.000 17.795 0.373 18.168 0.00002 0.02051
0 . 965 19.117 0.001 19.119 0.3A7 19.A66 0.00007 0.0178A
0.970 20.875 0.006 20.881 0.317 21.198 0.00027 0.01A96
0.975 23.075 0.018 23.093 0.281 23.37A 0.00078 0.01202
0.980 25.802 0.0A7 25.8A9 0.238 26.086 0.00181 0.00912
0.985 28.353 0.098 28.A52 0.189 28.6A1 0.003A5 0.00660
0.990 29.5A9 0.166 29.71A 0.138 29.853 0.00557 0.00A63
0.995 27.866 0.22A 28.090 0.091 28.181 0.00799 0.00322
1.000 23.525 0.2A5 23.769 0.052 23.821 0.01029 0.00218
1.005 16.679 0.21A 16.893 0.026 16.919 0.01268 0.00151
1.010 9.919 0.151 10.070 0.011 10.081 0.01A99 O.OOlOA
1.015 A.87A 0.085 A. 960 0.003 A. 963 0.01723 0.00070
1.020 1.860 0.039 1.899 0.001 1.900 0.020A9 0.000A9
1.025 0.5A6 O.OIA 0.560 0.000 0.560 0.025A3 0.00036
1.030 0.130 O.OOA 0.13A 0.000 0.13A 0.03123 0.00022
1.035 0.016 0.001 0.017 0.000 0.017 0.057A6 0.00058
l.OAO O.OOA 0.000 O.OOA 0.000 O.OOA 0.0A319 0.00000
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Table 4. Fraction of energy loss (in Coulomb interactions) due to track ends, as fiinaion of

depth in units of CSDA range, zItq, for proton beams incident with energy Tg.

To ,
MeV

ro , g/cm
^

250.0
37.94

200.0
25.96

160.0
17.65

130.0
12.28

100.0
7.718

70.0
4.080

50.0
2.227

z/ro F R A C T I (0 N

0.950 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001
0.955 0.00000 0.00000 0.00000 0.00000 0.00001 0.00002 0 . 00004
0.960 0.00001 0.00001 0.00002 0.00003 0.00004 0.00009 0.00018
0.965 0.00003 0.00005 0.00008 0.00011 0.00018 0.00034 0.00060
0.970 0.00013 0.00019 0.00028 0.00039 0.00058 0.00100 0.00166
0.975 0.00043 0.00059 0.00080 0.00106 0.00152 0.00245 0.00383

0.980 0.00108 0.00142 0.00186 0.00238 0.00325 0.00499 0.00745
0.985 0.00217 0.00276 0.00351 0.00439 0.00583 0.00861 0.01247
0.990 0.00362 0.00452 0.00563 0.00693 0.00903 0.01301 0.01854
0.995 0.00525 0.00646 0.00795 0.00972 0.01255 0.01785 0.02499
1.000 0.00690 0.00844 0.01034 0.01255 0.01607 0.02263 0.03147
1.005 0.00855 0.01038 0.01265 0.01533 0.01957 0.02746 0.03831

1.010 0.01018 0.01228 0.01502 0.01817 0.02307 0.03232 0 . 04446
1.015 0.01209 0.01447 0.01764 0.02122 0.02668 0.03733 0.05134
1.020 0.01430 0.01694 0.02043 0.02462 0.03133 0.04300 0.05947
1.025 0.01716 0.02059 0.02440 0.02890 0.03698 0.05058 0.06755
1.030 0.02197 0.02632 0.03148 0.03551 0.04471 0.05934 0.07954
1.035 0.03446 0.03256 0.04153 0.04684 0.05531 0.07092 0.09662
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Table 5. Energy loss from nuclear interactions, as fraction of the energy loss from Coulomb
interactions, as function of depth in units of the CSDA range, z/rQ, for proton beams

incident with energy Tq.

To .
MeV

ro , g/cm
^

250.0
37.94

200.0
25.96

160.0
17.65

130.0
12.28

100.0
7.718

70.0
4.080

50.0
2.227

z/ro F R A C T I (3 N

0.000 0.61257 0.43368 0.30570 0.22122 0.14880 0.08914 0.05524
0.100 0.55653 0.39407 0.27809 0.20180 0.13644 0.08204 0.05079
0.200 0.50000 0.35411 0.25037 0.18233 0.12398 0.07477 0.04623
0.300 0.44281 0.31380 0.22253 0.16279 0.11137 0.06730 0.04162
0.400 0.38489 0.27320 0.19458 0.14316 0.09852 0.05957 0.03695
0.500 0.32621 0.23235 0.16650 0.12338 0.08530 0.05151 0.03214

0.600 0.26689 0.19125 0.13827 0.10319 0.07154 0.04313 0.02696
0.700 0.20700 0.14986 0.10956 0.08217 0.05695 0.03454 0.02112
0.800 0.14653 0.10773 0.07941 0.05959 0.04123 0.02504 0.01433
0.900 0.08363 0.06196 0.04559 0.03437 0.02371 0.01297 0.00637
0.950 0.04739 0.03514 0.02583 0.01881 0.01182 0.00546 0.00207
0.980 0.01940 0.01366 0.00916 0.00597 0.00318 0.00098 0.00011

0.990 0.01068 0.00725 0.00463 0.00286 0.00137 0.00031 0.00002
1.000 0.00556 0.00362 0.00218 0.00125 0.00052 0.00008 0.00000
1.010 0.00299 0.00184 0.00104 0.00055 0.00018 0.00002 0.00000
1.020 0.00171 0.00097 0.00051 0.00024 0.00006 0.00000 0.00000
1.030 0.00097 0.00059 0.00023 0.00010 0.00003 0.00000 0.00000
1.035 0.00146 0.00066 0.00000 0.00000 0.00000 0.00000 0.00000
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Table 6. Comparison of the average energy loss (due to Coulomb interactions) per unit depth,

(dE/^)c, calculated with Grids 1, 2, 3, 4 and 5. The results are for a 160-MeV
beam in water, and for each case are based on a sample of 1 million Monte Carlo

histories.

z/ro (dE/dz)c
MeV cm^/g

Std.Dev.
(Percent)

Difference w.r.t. Grid
(Percent)

5

(1) (2) (3) (4)

Grid 1

(5)
Grid 2

(6)
Grid 3

(7)
Grid 4

0.50 6.300 <0.01 0.01 0.01 0.01 <0.01
0.90 11.667 <0.01 0.06 0.08 0.05 0.03
0.95 15.926 0.01 0.10 0.14 0.11 0.07
0.99 29.459 0.10 0.47 -0.18 0.14 -0.03
1.00 23.435 0.16 0.28 -0.19 -0.60 -0.06
1.01 9.981 0.30 -0.97 -1.29 -2.02 -0.71
1.02 1.891 0.78 -1.42 -2.48 -2.70 -1.54

Column (1): Depth in units of CSDA range rQ. At 160 MeV, rQ = 17.65 g/cm^.

Column (2): Average energy loss per unit depth due to Coulomb interactions, calculated with

Grid 5. Track-end contribution is omitted.

Column (3): Percent standard deviation of results in column (2).

Columns (4) to (7): Percent differences of results calculated with Grids 1, 2, 3 and 4,

respectively, from results in column (2) calculated with Grid 5.
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Table 7. List of files stored on the 1.44-Mb distribution disk. The files are contained in four

self-extracting archive files, PARAM.EXE, VPREP.EXE, MPREP.EXE and

PTRAN.EXE.

PARAM.EXE Self-extracting archive file; expands to 1005A08 bytes

PARAMA.FOR Fortran source code
COMPOS. WAT Composition data for water
STOPRANG.WAT Stopping-power and remge table for water
OXFIT.DAT Total nonelastic nuclear cross section for oxygen
PARAMA.TBl Output table, Grid 1

PANAMA. TB2 Output table, Grid 2

PANAMA. TB3 Output table, Grid 3

PANAMA. TBA Output table. Grid A

PANAMA. TBS Output table. Grid S

PARAMA.AR2 Output array for VPREPA and MPREPA, Grid 2

PANAMA.AR3 Output array for VPREPA and MPREPA, Grid 3

PANAMA. ARA Output array for VPREPA and MPREPA, Grid A

PANAMA . PT2 Output array for PTRANID, PTRANIDX or PTRAN3D, Grid 2

PANAMA . PT3 Output array for PTRANID, PTRANIDX or PTRAN3D, Grid 3

PANAMA . PTA Output array for PTRANID, PTRANIDX or PTRAN3D, Grid A

VPREP.EXE Self-extracting archive file; expands to 3670A57 bytes

VPREPA.FOR Fortran source code
VCONA.FOR Fortran source code
VSAMPA.FOR Fortran source code
VSUMA.FOR Fortran source code
VPREPA.AR2 Output file for VCONA, Grid 2

VPREPA.AR3 Output file for VCONA, Grid 3

VPREPA.AR2 Output file for VCONA, Grid A

VCON4 produces output files VPREPA.BR2, VPREP4.BR3 or
VPREP4.BR4 for use in PTRAN3D or PTRANID.

MPREP.EXE Self-extracting archive file; expands to 29S3884 bytes.

MPREP«.FOR
MCONA.FOR
MSAMPA.FOR
THSET2
MOLCl.COF
M0LC2.C0F
MFREFA.AR2
MPREPA.AR3
MPREP4.ARA

Fortran source code
Fortran source code
Fortran source code
Reduced deflection angles for Moliere distribution
Mollere expansion coefficients f(l}
Moliere expansion coefficients f(2)

Output file for MCONA, Grid 2

Output file for MCONA, Grid 3

Output file for MCONA, Grid A

MCONA produces output files MFREPA.BR2, MPREPA.BR3 or
MPREPA.BRA for use in PTRAN3D or PTRANID.

PTRAN.EXE Self-extracting archive file; expands to 310A28 bytes.

PTRAN3D.F0R
THSET2
GAUSS.DAT
PTRAN3D.TST
XPTRAN3D . TST
PTRANID. FOR
PTRANIDX.FOR
PTRANIDY.FOR
PTSUM.FOR
PTSUMTAB.TST
PTSUMARR.TST

Fortran source code
Reduced deflection angles for Moliere distribution
Arrays used for sampling from Gaussian distribution
Output from test run
Auxiliary output from test ran
Fortran source code
Fortran source code
Fortran source code

Fortran source code
Output table from test run
Output arrays from test run
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Table 8. Multiplicative correction factor kjjp used in Eq (A1.8). Values in parentheses were

obtained by interpolation. This t^le corrects misprints in Table 2.2 of Berger and

Wang (1988).

Thomas -Fermi Hartree-Fock Potentials
Potential

Za/^ Z - 1 2 4 6 7 8 13 29 47

0.00 1.037 0.863 1.530 1.129 1.058 1.081 1.116 1.186 1.101 1.183

0.05 (1.034) 0.861 1.527 1.127 (1.055) 1.078 1.114 1.183 1.098 1.180
0.1 1.028 0.855 1.517 1.119 1.048 1.071 1.106 1.175 1.091 1.172
0.2 1.004 0.836 1.482 1.094 1.024 1.047 1.081 1.149 1.066 1.145

0.4 0.950 0.790 1.401 1.034 0.969 0.990 1.022 1.086 1.008 1.083
0.6 0.918 0.764 1.355 1.000 0.937 0.957 0.989 1.050 0.975 1.047
0.8 0.912 0.759 1.346 0.994 0.931 0.951 0.982 1.043 0.969 1.040
1.0 0.918 0.764 1.356 1.001 0.937 0.957 0.989 1.050 0.975 1.047

1.2 0.929 0.773 1.371 1.012 0.947 0.968 1.000 1.062 0.986 1.059
2.4 0.968 0.805 1.428 1.054 0.986 1.008 1.041 1.106 1.027 1.102
4.8 0.983 0.818 1.450 1.070 1.001 1.023 1.057 1.122 1.041 1.117
9.6 0.987 0.821 1.454 1.072 1.003 1.025 1.058 1.123 1.040 1.113
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Figures

Fig. 1. Total nonelastic nuclear cross sections for protons incident on oxygen-16. The curve

represents the cross section used in PTRAN. The experimental points are from

Renberg et al. (1972) and Carlson et al. (1975).

Fig. 2. Vavilov energy-loss distributions for protons in water. Results were calculated for

initial energies and path lengths from Grid 4 (see Section 2.2). The various parameters

have the following values:

Energy

(MeV)

Path Length

(g/cm^) (MeV)
K

25 0.02282 0.03780 0.05123 0.6878

50 0.04002 0.03459 0.09863 0.3093

100 0.06850 0.03184 0.1834 0.1388

200 0.1113 0.02958 0.3205 0.06135

Fig. 3. Dependence of proton energy spectra on the step-size grid used in PTRAN. The

bottom panel shows the track-length distribution differential in energy, y(T,z), from a

160-MeV proton beam in water, at a depth z = 0.1 rQ, where rQ is the CSDA range

(17.65 g/cm^). This histogram was calculated with step-size Grid 5. The top panel

shows the percentage amounts by which values of y(T,z) calculated with Grids 2, 3

and 4 differ from the results obtained with Grid 5.

Fig. 4. Similar to Fig. 3, for a depth z = 0.5 rQ.

Fig. 5. Similar to Fig. 3, for a depth z = 0.9 rQ.

Fig. 6. Radial distribution of energy loss due to Coulomb interactions, as a function of the

radial distance p from a pencil beam, at a depth z = 0.1 rg, for a 160 MeV beam in

water. The histograms represent Monte Carlo results obtained with program

PTRAN3D, assuming various step-size grids. The curve is calculated using the theory

of Moii^re (1955), evaluated in the continuous-slowing-down approximation. The

Monte Carlo results were obtained taking into account multiple-scattering angular

deflections, but neglecting lateral multiple-scattering displacements within each step.

Fig. 7. Similar to Fig. 7, but calculated with inclusion of lateral multiple-scattering

displacement in each step.
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